Effect of Substance P in Staphylococcus aureus and Staphylococcus epidermidis Virulence: Implication for Skin Homeostasis
نویسندگان
چکیده
Staphylococcus aureus and Staphylococcus epidermidis are two major skin associated bacteria, and Substance P (SP) is a major skin neuropeptide. Since bacteria are known to sense and response to many human hormones, we investigated the effects of SP on Staphylococci virulence in reconstructed human epidermis model and HaCaT keratinocytes. We show that SP is stimulating the virulence of S. aureus and S. epidermidis in a reconstructed human epidermis model. qRT-PCR array analysis of 64 genes expressed by keratinocytes in the response to bacterial infection revealed a potential link between the action of SP on Staphylococci and skin physiopathology. qRT-PCR and direct assay of cathelicidin and human β-defensin 2 secretion also provided that demonstration that the action of SP on bacteria is independent of antimicrobial peptide expression by keratinocytes. Considering an effect of SP on S. aureus and S. epidermidis, we observed that SP increases the adhesion potential of both bacteria on keratinocytes. However, SP modulates the virulence of S. aureus and S. epidermidis through different mechanisms. The response of S. aureus is associated with an increase in Staphylococcal Enterotoxin C2 (SEC2) production and a reduction of exolipase processing whereas in S. epidermidis the effect of SP appears mediated by a rise in biofilm formation activity. The Thermo unstable ribosomal Elongation factor Ef-Tu was identified as the SP-interacting protein in S. aureus and S. epidermidis. SP appears as an inter-kingdom communication factor involved in the regulation of bacterial virulence and essential for skin microflora homeostasis.
منابع مشابه
Substance P and Calcitonin Gene-Related Peptide: Key Regulators of Cutaneous Microbiota Homeostasis
Neurohormones diffuse in sweat and epidermis leading skin bacterial microflora to be largely exposed to these host factors. Bacteria can sense a multitude of neurohormones, but their role in skin homeostasis was only investigated recently. The first study focused on substance P (SP), a neuropeptide produced in abundance by skin nerve terminals. SP is without effect on the growth of Gram-positiv...
متن کاملSkin-bacteria communication: Involvement of the neurohormone Calcitonin Gene Related Peptide (CGRP) in the regulation of Staphylococcus epidermidis virulence
Staphylococci can sense Substance P (SP) in skin, but this molecule is generally released by nerve terminals along with another neuropeptide, Calcitonin Gene Related Peptide (CGRP). In this study, we investigated the effects of αCGRP on Staphylococci. CGRP induced a strong stimulation of Staphylococcus epidermidis virulence with a low threshold (<10-12 M) whereas Staphylococcus aureus was insen...
متن کاملThe Effect of Biosurfactant of Saccharomyces Cerevisiae on Biofilms Produced by Staphylococcus Aureus, Epidermidis and Saprophyticus: A Laboratory Study
Background and Objectives: Biosurfactants are amphiphilic molecules produced by microorganisms that due to surfactant activity, have several applications in different industries such as cleaning, emulsification, foaming and dispersion. The aim of this study was to investigate the effect of biosurfactant extracted from saccharomycess cerevisiae on biofilm formation of staphylococcus aureus (PTC...
متن کاملAntibiofilm Formation and Wound Healing Activity of Glycopeptide Antibiotic Vancomycin against Skin Pathogens
Biofilm formation of Staphylococcus aureus and Staphylococcus epidermidis were determined by the production of protease and lipase. Inhibition of lipolytic and proteolytic activity will lead to control of virulence factors produced by S. aureus and S. epidermidis. Antibiofilm activity of isolated compound Vancomycin against S. aureus and S. epidermidis showed significant results. The effect of ...
متن کاملEffects of a Skin Neuropeptide (Substance P) on Cutaneous Microflora
BACKGROUND Skin is the largest human neuroendocrine organ and hosts the second most numerous microbial population but the interaction of skin neuropeptides with the microflora has never been investigated. We studied the effect of Substance P (SP), a peptide released by nerve endings in the skin on bacterial virulence. METHODOLOGY/PRINCIPAL FINDINGS Bacillus cereus, a member of the skin transi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in microbiology
دوره 7 شماره
صفحات -
تاریخ انتشار 2016